Scientists trained a computer to classify breast cancer tumors

Young Drug Users Encounter Barriers to Hepatitis C Treatment
November 29, 2018
Romaine E. Coli Outbreak: FDA Identifies Source 
November 30, 2018
Show all

Scientists trained a computer to classify breast cancer tumors

Computer technology can better identify breast tumors.

Using technology similar to the type that powers facial and speech recognition on a smartphone, researchers at the University of North Carolina Lineberger Comprehensive Cancer Center have trained a computer to analyze breast cancer images and then classify the tumors with high accuracy.

In a study published in the journal NPJ Breast Cancer, researchers reported they used a form of artificial intelligence called machine learning, or deep learning, to train a computer to identify certain features of breast cancer tumors from images. The computer also identified the tumor type based on complex molecular and genomic features, which a pathologist can’t yet identify from a picture alone. They believe this approach, while still in its early stages, could eventually lead to cost savings for the clinic and in breast cancer research.

“Your smartphone can interpret your speech, and find and identify faces in a photo,” said the study’s first author Heather D. Couture, a graduate research assistant in the UNC-Chapel Hill Department of Computer Science. “We’re using similar technology where we capture abstract properties in images, but we’re applying it to a totally different problem.”

For the study, the researchers used a set of 571 images of breast cancer tumors from the Carolina Breast Cancer Study to train the computer to classify tumors for grade, estrogen receptor status, PAM50 intrinsic subtype, histologic subtype, and risk of recurrence score. To do this, they created software that learned how to predict labels from images using a training set, so that new images could be processed in the same way.

They then used a different set of 288 images to test the computer’s ability to distinguish features of the tumor on its own, comparing the computer’s responses to findings of a pathologist for each tumor’s grade and subtype, and to separate tests for gene expression subtypes. They found the computer was able to distinguish low-intermediate versus high-grade tumors 82 percent of the time. When they had two pathologists review the tumor grade for the low-intermediate grade group, the pathologists agreed with each other about 89 percent of the time, which was slightly higher than the computer’s accuracy.

In addition, the computer identified estrogen receptor status, distinguished between ductal and lobular tumors, and determined whether each case had a high or low risk of recurrence high levels of accuracy. It also identified one of the molecular subtypes of breast cancers—the basal-like subtype—which is based on how genes within the tumor were expressed—with 77 percent accuracy.

“Using artificial intelligence, or machine learning, we were able to do a number of things that pathologists can do at a similar accuracy, but we were also able to do a thing or two that pathologists are not able to do today,” said UNC Lineberger’s Charles M. Perou, Ph.D., the May Goldman Shaw Distinguished Professor of Molecular Oncology, professor of genetics, and of pathology and laboratory medicine in the UNC School of Medicine. “This has a long way to go in terms of validation, but I think the accuracy is only going to get better as we acquire more images to train the computer with.”

The computer’s ability to identify the basal-like subtype was exciting to researchers, and could have applications in cancer research. They also believe the technology could have applications in communities that do not have pathology resources as well as in helping to validate pathologists’ findings.

Read on: Scientists trained a computer to classify breast cancer tumors

The health and medical information on our website is not intended to take the place of advice or treatment from health care professionals. It is also not intended to substitute for the users’ relationships with their own health care/pharmaceutical providers.

Comments are closed.