With ResearchKit study, Duke aims to map many variances in multiple sclerosis

Sleep disturbance in psoriasis leads to psychological and physical predictors
April 19, 2018
The Medical Minute: Are You at Increased Risk for Colorectal Cancer?
April 20, 2018
Show all

With ResearchKit study, Duke aims to map many variances in multiple sclerosis

An app is aiming to improve the understanding of multiple sclerosis.

Duke University has launched a new Apple ResearchKit study, the MS Mosaic Study, aimed at using big data and patient insights to improve medical understanding of multiple sclerosis. Dr. Lee Hartsell, assistant professor of neurology at Duke University Medical Center, spoke about the new study — and some of the challenges involved in launching it — at the Digital and Personal Connect preconference event at HIMSS18 last week.

“A patient [with MS] is experiencing any combination of 21 non-specific symptoms, whose severity will fluctuate due to unpredictable bouts of inflammation and due to unmeasured changes in biorhythms, body temperature, activity levels, sun exposure, diet, emotional state, and the side effects from any of 15 different disease modifiers, four different relapse modifiers, and 88 different symptom modifiers,” Hartsell said. “These experiences can’t be summarized during a 10-minute visit. We try, and because we’ve tried, MS has become the second most expensive chronic disease to manage in the United States. It’s not significantly data-driven.”

MS Mosaic, named because its goal is to create a comprehensive picture of the disease from fragmented patient reports, is an Apple ResearchKit app that launched in September. The app includes a number of tracking tools for people with MS to report their daily symptoms, activities, and experiences. In return, they get various features that help them understand trends in their disease.

“To help solidify engagement we incorporated several feedback tools,” Hartsell said. “These include a commonplace symptom and medication journal, weekly reports that summarize symptoms and provide customized links to learn more about your symptoms and how to manage them, provider reports that summarize the data that occurs between clinic visits for quick provider review during the visit itself, and data visualizations that allow participants to find their own correlations within their symptoms.”

Meanwhile, the app, which currently has 400 downloads and 350 active users, collects that de-identified data and starts using it to build models that will help researchers better understand the disease.

“All the while, the study is using the same data to solidify our understanding of MS symptoms through a variety of customized machine learning algorithms,” Hartsell said. “Examples of our ongoing analyses include ways of identifying the hidden symptom subpopulations through clustering methodology. So a good example of this is actually fatigue. Ninety-seven percent of MS patients experience that on a regular basis. But are they experiencing it because of not getting enough sleep because they were up going to the bathroom throughout the night? Is it because of the sedating effects of their medication? Is it because the disease itself has kept them worn out? We don’t know. And we don’t have the current instruments that help us tease that out. So we don’t have a way of effectively intervening on that because we don’t know enough about this fatigue.”

Read on: With ResearchKit study, Duke aims to map many variances in multiple sclerosis | MobiHealthNews

Read on: With ResearchKit study, Duke aims to map many variances in multiple sclerosis | MobiHealthNews 

The health and medical information on our website is not intended to take the place of advice or treatment from health care professionals. It is also not intended to substitute for the users’ relationships with their own health care/pharmaceutical providers.

Comments are closed.